
REGULARIZED ANALYTICAL SOLUTION
OF CAUCHY PROBLEM FOR ELASTIC RECTANGLE

Yu.M. Grigor’ev
North-Eastern Federal University,

Academy of Sciences of Republic Sakha (Yakutia), Yakutsk, Russia

1. Introduction
Let us have an element of construction with a boundary S = S1 ∪ S2 consisting of two parts S1

and S2. The part S1 is accessible for all measurements and the part S2 is not accessible. In engineering
practice it is often necessary to reconstruct the stress-strain state of such structural element by means
of measured data on S1. In this case within an elastic model we have the Cauchy problem for the
Lame equation of theory of elasticity. The Cauchy problem for elliptic equations is a so-called ill-
posed problem. The main difficulty for solving such problems is numerical instability. For the Cauchy
problem in linear elasticity there exist numerous ways for numerical solving. Many of these methods
can be classified as the Tikhonov type regularization methods, the finite element method, the boundary
element method, etc. (sf. [1, 2]). With regard to analytical solutions it is known only usage of
Carleman’s method in the elasticity theory. In this paper we present an analytical method for the
Cauchy problem solution of Lame equation in a rectangle. This method generalizes the Liu method
[3] for an analytical solution of the Cauchy problem of Laplace equation in the rectangle.

2. Formulation of problem
In numerous publications under the name of Cauchy problem for the Laplace equation there

exist two types of problems. In them it is necessary to find a harmonic function in Ω ∈ R3. At first
one has a cylindrical domain Ω = S× (0, T ) with a lower base S ∈ R2 and a lateral surface S1. On S
the Cauchy conditions are given: u = f , ∂u\∂n = g, and some boundary conditions are given on the
lateral surface S1, for example, u = 0, on an upper base there are no given boundary conditions. Such
problems can be named as an initial boundary value problem for the Laplace equation (see Ch.9 in
[1]). For another type we have a bounded domain Ω ∈ R3 with a smooth boundary S = S1 ∪ S2 and
the Cauchy conditions are given on the part S1 of a boundary S. We will deal with the first type of the
Cauchy problem and it’s analogous in the elasticity theory. It is necessary to note that the first type
of Cauchy problem is not considered for analytical solutions in the elasticity theory. All analytical
results in the elasticity theory concern the second type problem and use Carleman’s method.

An equilibrium equation in the theory of elasticity is the Lame equation

(1) Lu ≡ µ4u + (λ+ µ)∇(∇ · u) = 0.

Hooke’s Law in the Cartesian coordinates xi (i = 1, 2, 3) expresses connections between components
σij of stress tensor and components εij of deformation tensor and for the linear elasticity has the form

(2) σij = (λ+ 2µ)(∇ · u)δij + 2µεij, εij =
1

2
(ui,j + uj,i) . (i, j = 1, 2, 3)

For simplicity we will consider the plane deformation when components of displacement u
have the form ux = u(x, y), uy = v(x, y), uz = 0. Let Ω ∈ R2 be the rectangle r ∈ (0, a) × (0, b).
The problem to be solved is the next:

(3) Lu(r) = 0, r ∈ Ω; u = v, Tn = F on y = b; ux = σxy = 0 on x = 0 and x = a,



here Tn is a stress vector. Thus, we have the Cauchy problem for the Lame equation with the Cauchy
data on the upper base and with zero boundary conditions on the lateral sides of rectangle.

3. Method of solution
Let us introduce a function f0 = (λ + 2µ)∇ · u. It is known that this function is harmonic.

Using boundary conditions from (3) and Hooke’s law (2) it can be shown that for this function we
have the Cauchy problem. The regularized solution fα0 of this problem is obtained by using the Liu
[3] method

(4)
fα0 (x, y) =

∞∑
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sin
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,
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where α is a parameter of regularization; the function h(x) is expressed in terms of boundary functions
from (3). In this method the integral equation of the first kind is solved by Lavrent’ev’s regularization
method using the Fourier method. The kernel in this integral equation has a termwise separable prop-
erty. This property is the main reason for a solution to be obtained in a closed form. After finding
fα0 for the components ux and uy of displacement we also have the Cauchy problems for the Poisson
equations. These problems are solved by the method similar to Liu. Thus, for the solution ux and uy
of the Cauchy problem (3) we have regularized expressions similar to (4), but with additional regu-
larization parameters β and γ. If the boundary functions in (3) are bounded in closed intervals, then
all of these regularized solutions converge uniformly to an exact solution and can be differentiated
termwise any number of times. Error estimations for these solutions are obtained. The presented
numerical examples show the efficiency of new method.

4. Conclusion
The Liu method for solving the Cauchy problem for the Laplace equation is generalized for

the Cauchy problem of the linear elasticity. This allows us to obtain the regularized solution of the
problem in the closed form by using the Fourier and Lavrent’ev methods. The obtained regular-
ized solution converges absolutely and uniformly and the error estimation of regularized solution is
proved. The numerical examples show the efficiency and robustness of new method. For simplicity
we only consider a two–dimensional rectangular domain. The method can be used in the cases of
other boundary conditions, it can be generalized for a three–dimensional case.

5. Acknowledgments
This work was supported by grant 15-41-05081 from the Russian Foundation for Basic Re-

search.

6. References
[1] S.I. Kabanikhin (2012). Inverse and ill-posed problems : theory and applications, Walter de

Gruyter GmbH Co. KG, Berlin-Boston.
[2] B. Durand, F. Delvare and P. Bailly (2011). Numerical solution of Cauchy problems in linear

elasticity in axisymmetric situations, Int. J. Sol. Str., 48, 3041-3053.
[3] C.-S. Liu (2011). An Analytical Method for the Inverse Cauchy Problem of Laplace Equation in

a Rectangular Plate, J. Mech., 27, 04, 575-548.


