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1. Introduction 
The problem of thin rigid inclusions (anticracks) occurs frequently in various engineering 

applications [1-2]. The investigations of the strength of a solid weakened by these defects in thermal 
environments are based on the solutions of the corresponding thermoelastic problems.  A method of 
solution to the antisymmetric problem for determining the steady-state thermal stresses in a space 
induced by an insulated rigid sheet-like inclusion of arbitrary shape under vertically uniform heat 
flow at infinity has been given in [3-4].  

It is the purpose of this paper to present solutions to the symmetric case when the anticrack 
surfaces are exposed to the prescribed symmetric temperatures. It is stated that the problem can be 
considered as the counterpart of the corresponding mechanical problem [5]. The equations are 
solved by a general (thermal) potential method. A typical application to the case of a circular 
anticrack under uniform-temperature load (see Fig. 1) is presented. In this case a new complete 
solution expressed in elementary functions is obtained and analyzed from the point view of 
initiating fractures near the edge of the inclusion.  

 

Fig. 1. A circular anticrack in an elastic space subjected to a constant temperature  

2.  Method and results 
A traditional two-staged method of solution will be used. Using the symmetry conditions, first 

we need to solve a mixed boundary-value problem of heat conduction in a half space with the 
applied temperature over the anticrack surface. Secondly, we search for the solution to 
thermoelastic equations at the already known temperature field and with some mechanical anticrack 
boundary conditions. The governing 2D singular integral equations are derived for a planar 
anticrack of arbitrary shape S in terms of the shear stress discontinuities across inclusion 
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where  THERM
1 2, , 1, 2f x x    are given from the solution of the thermal anticrack problem, and the 

constant   is  
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with   and   being the Lamé moduli. Besides,  1, 2    and 3  stand for the corresponding 
displacements and the angle of rotation of the inclusion as a rigid whole that are determined from 
the equilibrium conditions.   

As an example, a circular anticrack is analysed subjected to a uniform temperature 0T . The 
analytical expressions for the relevant field quantities (e.g., the displacements, stresses, 
temperatures, heat fluxes in the inclusion plane) are given and discussed. This solution is also 
compared with that corresponding to a penny-shaped crack problem. 
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