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1. Introduction
The main goal of this talk is to reduce the complete system of equations for the dynamics

of a medium with couple stresses under finite strains and particle rotations to a thermodynamically
consistent system of laws of conservation. Such system enables analyzing generalized solutions with
surfaces of discontinuity of stresses and velocities, and allows to obtain the integral estimates that
guarantee the uniqueness and continuous dependence on the initial data of solutions of the Cauchy
problems and the boundary-value problems with dissipative boundary conditions.

For this the special natural measure of curvature is chosen that is a strain state characteristic
independent of deformation method. The nonlinear constitutive equations of the couple stress theory
are constructed using the method of internal thermodynamic parameters of state. The linearization of
these equations in isotropic case yields the Cosserat continuum equations, where material resistance
to the change in curvature is characterized by a single coefficient as against the three independent
coefficients of the classical theory, [1]. So, it turns out that the developed variant of the model gives
an adequate description of generalized plane stress state in an isotropic micropolar medium while
the classical one describes this state exclusively at a certain ratio of elastic coefficients characterizing
resistance of a material to the change in internal curvature.

2. Special tensor of curvature
The translational motion of a particle in a medium possessing microstructure is described by

an equation x = ξ + u, connecting the Lagrangian ξ and Eulerian x vectors of centers of masses with
the displacement vector u(ξ, t). The independent rotation of a particle is defined by an orthogonal
rotation tensor R(ξ, t). The antisymmetric tensor of angular velocity of a particle is calculated by
the formula: Ω = Ṙ · R∗ (hereinafter star denotes the conjugate). As a measure of deformation of
an infinitely small element, it is assumed to take the tensor Λ = R∗ · xξ. By differentiating with
respect to time, it is found that the latter tensor satisfies the equation:

R · Λ̇ = vξ − Ω · xξ,(1)

where v = ẋ is the vector of velocity of translational motion. Aside from the tensor Λ, a special
curvature tensor M is used, calculated in terms of the rotation tensor R and its derivatives with re-
spect to the Lagrangian variables in the Cartesian coordinate system R,k = ∂R/∂ξk (k = 1, 2, 3).
Let M (k) = R,k ·R∗ be the antisymmetric curvature tensors along the coordinate lines. The Darboux
vectors fitting with these tensors are assigned by the columns of M . Differentiating M (k) with re-
spect to time and Ω with respect to the variables ξk yields kinematic equations that admit the tensor
representation:

Ṁ = ωξ + Ω ·M.(2)

Note, that it differs from the equation for commonly used curvature measures, [2, 3]. It follows
from (2) that M is neither an invariant nor an indifferent tensor, i.e. it changes both under rotation of
the current configuration and under rotation of the original configuration. By the same law goes the
transformation of the distortion tensor xξ, for instance, which is used to determine the invariant strain



measure x∗ξ · xξ, involved in the Lagrangian representation of motion in a classic elastic medium,
and an indifferent measure xξ · x∗ξ , included in the Eulerian representation. The both measures are
independent of rotation of a medium element as a rigid whole. Similarly, the invariance is the property
of the productM∗ ·M , that must be used as an independent parameter of state to construct constitutive
equations accounting for the couple properties of a medium, and that leads to a thermodynamically
consistent system of conservation laws.

3. Thermodynamically consistent system
The system of equations of the dynamics of a medium with couple stresses is constructed based

on the integral laws of impulse, momentum and energy conservation. The principles of thermody-
namics goes into the constitutive equations for stress tensor σ and couple stress tensor m:

R∗ · σ =
∂Φ

∂Λ
, m =

∂Φ

∂M
,(3)

and a supplementary equation m∗ : (Ω ·M) = 0, which is satisfied automatically because the stress
potential Φ depends not of M , but of the symmetric tensor M∗ ·M .

The equations (1) – (3) allows representing the model by a thermodynamically consistent sys-
tem in the following sense: it is possible to indicate generating potentials L0 and Lj , the use of which
modifies the complete system of equations to the next form:

∂

∂t

∂L0(DU)

∂U
=

∂

∂ξj

∂Lj(U)

∂U
+ F (D,U),

∂D

∂t
= G(D,U).(4)

Here U is the column-vector composed of unknown functions, namely, projections of vectors of ve-
locity of translational motion and angular velocity, components of tensors of stresses and couple
stresses; D is the nonsingular matrix, the non-zero and non-unit coefficients of which are the compo-
nents of tensor of rotation R; F and G are the preset vector and matrix functions.

The system (4) can be written as symmetric t-hyperbolic system which is investigated by means
of well-designed methods used, e.g. in [4].
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