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1. Introduction

The desiccation cracks form polygonal cells on the dry-out surfaces of the mixture of the powder
and the water. The size and the shape of the cells change systematically depending on the specimen
thickness. This particular pattern of cracks implies the governing mechanism of the desiccation crack
phenomenon. In previous researches, some models and numerical analysis methods for the desicca-
tion cracks are proposed [1, 2]. In spite of the importance of the coupling of the inhomogeneous water
distribution and the fracture, most of these researches are based on the assumption of the homoge-
neous water distribution or stay in the pseudo coupling analysis. Therefore, the geometry of the cells
reproduced in these numerical analyses are different from the experimental observations.

In this research, we propose the coupling model of diffusion, deformation, and the fracture.
We perform the numerical analysis for the reproduction of the desiccation crack pattern based on
the proposed coupling model. The analysis of the water diffusion and the seamless analysis of de-
formation and fracture is carried out by FEM and PDS-FEM (Particle Discretization Scheme Finite
Element Method) [3], respectively. The results of the numerical analysis are evaluated qualitatively
by comparing with the experimental observations.

2. Mathematical model and numerical analysis

The water movement inside the mixture of the powder and water is expressed by Fick’s diffusion
equation. Consider a permeable and linearly elastic bodyΩ with external boundaryΓ1. The initial
distribution of the water inΩ is θ̄(x, 0). When the water inΩ evaporates fromΓ1 and the crack
surfacesΓ2, the water distribution inΩ is given by the following boundary value problem:

θ̇ = D∇2θ x ∈ Ω(1a)
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θ(x, 0) = θ̄(x) x ∈ Ω ,(1c)

whereθ(x, t) is a volumetric water content,t is time,D is a moisture diffusion coefficient andQ1(θ)
andQ2(θ) are water flux due to evaporation fromΓ1 andΓ2. Since a crack surface can be regarded as
a shield for the permeable flow, the water flux acrossΓ2 is restricted. This corresponds to the intro-
duction of the anisotropic diffusion coefficient. We solve this boundary value problem by FEM with
linear tetrahedral elements. In the case of drying shrinkage, the shrinkage strainεsij corresponding to
the volume reduction due to desiccation does not contribute to the generation of the stress. Therefore,
the stress strain relationship becomesσij = cijkl (εkl − εskl) whereεij is the total strain.

The deformation and the fracture are seamlessly treated by PDS-FEM. This numerical analysis
method applies the particle discretization for the displacement field and the strain field by using a pair
of the conjugate geometries; the Voronoi tessellations{Φα} and the Delaunay tessellations{Ψβ}.
To minimize the strain energy in theΩ, the discretized displacementuα

k should satisfy the following
equation of the force equilibrium:
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Figure 1. The final crack patterns formed on the top surface. Figure (a)-(d) show the results of the drying
experiment of calcium carbonate slurry, and Figure (e)-(h) show the results of the numerical analysis.

where,Kαγ
ik is a element stiffness matrix,cβijkl is an elastic tensor,Bβα

i is a strain-displacement matrix,
N is a number of Voronoi blocks, andΨβ is the volume ofβ-th Delaunay tessellation. The effect of
volume shrinkage due to desiccation is reflected on the equation of force equilibrium Eq. (2) asεsβij .

3. Numerical analysis

Since the time scales for the fracture and the water movement by diffusion have a strong con-
trast, we performed the weak coupled analysis of the water movement and the fracture. The numerical
analysis focuses on the drying experiment of calcium carbonate slurry. The width and the height of the
analysis models were set as 100 mm and the depthD was set as 5 mm, 10 mm, 20 mm, and 30 mm.
The measurable parameters were determined from the drying experiments. We prepared the finite
element models with the unstructured tetrahedral mesh for each thickness.

The results of the numerical analysis with the corresponding experimental results are shown
in Fig. 1 (e)-(h). The polygonal cells framed by the cracks are formed on the top surface of the
specimen. Comparing each thickness, the increasing tendency of the average size of the cells with
the increase of the model thickness can be found. These geometric features of the crack patterns
and their dependence on the specimen thickness reproduced in numerical analysis coincide with the
observation in the drying experiments of calcium carbonate slurry (Fig. 1 (a)-(d)).

4. Conclusions

The results of the numerical analysis show the satisfactory agreement with the experimental
observation in terms of the geometry of the cells and the increasing tendency of the averaged cell sizes
depending on the specimen thickness. These results indicate that the proposed model and the analysis
method capture the fundamental mechanism of the pattern formation of the desiccation cracks.
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