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1. Introduction
Recently the interest grows to applications of the strain gradient elasticity and plasticity, see e.g.

[1, 2]. For example, in order to model nanosized thin structures this generalized model of continuum
is widely used in the theory of plates and shells [3–6].

The aim of this lecture is to discuss the possible ways of derivation of two-dimensional plates
equations starting from three-dimensional linear strain-gradient elasticity. Here we briefly mention
the direct approach, the through-the-thickness integration, and variational approaches based on mini-
mization of total energy functional and other variational principles.

2. Strain gradient elasticity
The three dimensional linear gradient elasticity is based on the constitutive equations of the

following form [1]

(1) ∇ · σ + g = 0, σ = C : (ε− ℓ2∆ε), ε =
1

2
(∇u+∇uT ), ∆ = ∇ · ∇,

where g is a volume force vector, C is a stiffness tensor, ∇ is the 3D nabla-operator, σ and ε are the

stress and strain tensors, respectively, and ℓ is the length-scale parameter. Equilibrium equation (1)1
is complemented by proper kinematic or static boundary conditions.

3. Strain-gradient models of plates
Here we briefly discuss possible ways of reduction of 3D equations into 2D equations of the

theory of plates. In what follows unlike previous models [5, 6] where the Kirchhoff model was ex-
tended ti the case of strain gradient easticity, here we use the displacements vector w and the rotation
vector θ as independent kinematical descriptors as in the Mindlin-Reissner plate theory (the first shear
deformable plate theory).

3.1. Direct approach

Within the so-called direct approach we model a plate as a deformable material surface with
additional material properties, that is mass, energy, etc. Considering linear six-parametric shell model
we use the equilibrium equations in the form [7, 8]

(2) ∇s ·T+ f = 0, ∇s ·M+T× + c = 0,

where ∇s is the surface nabla-operator, T and M are the surface stress and couple stress tensors,

respectively, f and c are the external surface forces and couples, and T× denotes the vectorial invariant
of the second-order tensor T. The stress resultant tensor T is a linear function with respect to (1 −
ℓ2s∆)e and the couple stress tensor M is a linear function with respect to (1− ℓ2b∆)k

(3) T = (1− ℓ2s∆s)[α1Atre∥ + α2e
T
∥ + α3e∥ + α4e · n⊗ n],



(4) M = (1− ℓ2b∆s)[β1Atrk∥ + β2k
T
∥ + β3k∥ + β4k · n⊗ n].

Here we introduced two length-scale parameters ℓs and ℓb, αk and βk, k = 1, 2, 3, 4, are the
elastic moduli, and n is the unit normal vector to the plate base surface. The nonsymmetric linear
strain measures e and k are defined as follows e = ∇sw+A× θ, k = ∇sθ, e∥ = e ·A, k∥ = k ·A,
where A ≡ I− n⊗ n, and I is the unit tensor.

3.2. The through-the-thickness integration

Following [7] we apply the through-the-thickness integration to (1). For the reduction the Ru-
Aifantis theorem can be used [9]. This leads to the equilibrium equations (2) with constitutive equa-
tions similar to (3) and (4). Let us note that the assumed boundary conditions at the plate faces play
an important role since they may lead to different values of elastic stiffness.

3.3. Variational principles

Last but not the least approach to derivation of the 2D plate equations relates with variational
technique. Considering minimization of the total energy functional with the approximated 3D dis-
placements u = w + zθ we can derive 2D equilibrium equations, which are different from the
previous ones, in general.

4. Conclusions
The presented results shown that one should be aware of the straightforward transition of the

strain-gradient elasticity into two-dimensional equations of plates. Non-classic boundary conditions
of 3D strain gradient elasticity and the reduction method may lead to different plate model, in general.
As a result, the mechanics of plates based on strain gradient elasticity is more reach.
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