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1. Introduction
A solid-shell element which does not possess rotational degrees of freedom (DOFs) and which

is applicable to thin plate/shell problems is considered. The element approximation is constructed in
prisms, where displacements on the upper and lower surfaces are approximated in the global coordi-
nate system. In addition, two other fields are defined in the shell natural (local) coordinate system that
represent the components of the displacement vector in both the current shell normal direction and
the current shell tangent plane. To each field, an arbitrary order of approximation can be defined, and
all fields reproduce a complete and conforming polynomial approximation basis for the solid prism
element. It is not necessary to augment the formulation with an assumed natural strain (ANS) field or
enhanced assumed strain (EAS) field or to use reduced integration, making the element ideally suited
for geometrically and physically nonlinear problems.

In standard thin shell formulations, the approximation through the thickness is assumed to be
linear or higher order, i.e. the normals to the mid-surface in the initial configuration remain straight
but not normal during the deformation. In the proposed formulation the thickness of the element is
not constant and the normal stress in through-thickness direction is considered. For this reason, the
kinematics of this solid-shell element is richer than the kinematic assumed in Kirchhoff - Love plate
theory. In formulating this element, we do not aim to reproduce classical shell kinematic, thereby
avoiding the problem of element locking. This work builds on a substantial body of published work
by a number of different authors, most notably [3]. However this implementation proposes a new for-
mulation exploiting hierarchical, heterogeneous and anisotropic approximation spaces. That enables
us to construct efficient, error-adaptive multi-grid solvers.

In paper we presents examples showing robustness of presented solid-shell element, numerical
efficiency. Moreover in the context HPC computing we will show speed-up and scalability of mult-
grid solver exploiting hierarchical basis used in our element.

2. Hierarchical approximation in prism
In constructing the approximation space in a prism we apply a similar procedure to that shown

in [2] for tetrahedra. Nodal basis functions using barycentric coordinates are given by

(1) φv = λv, Lφ
v = φvζ, Uφ

v = φv(1− ζ)

where right subscript Lφ
v and Uφ

v indicates shape functions on lower and upper triangles respectively
and λv denotes the barycentric coordinates. Convective coordinate ζ ∈ [0, 1] is the coordinate through
the prism thickness. ζ = 0 defines the lower prism triangle and ζ = 1 the upper prism triangle.

The edge hierarchical approximation basis is constructed as follows

(2) β0i = λ0λi, φet
l = β0iLl(λi − λj), Lφ

et
l = φe

l ζ, Uφ
et
l = φe

l (1− ζ),

where i and j are nodal indices on a triangle. Ll is the Legendre polynomial of order l. If p is the
order of the polynomial for the triangle, then 0 ≥ l ≥ p − 2 and the number of DOFs on an edge is
p− 1. The triangle approximation basis is constructed by

(3) β0ij = λ0λiλj, φt
l,m = β0ijLl(λ0−λi)Lm(λ0−λj)ζ, Lφ

t
l,m = φt

l,mζ, Uφ
t
l,m = φt

l,m(1− ζ)



If p is the order of the polynomial on a triangle, then 0 ≥ l,m, l +m ≥ p − 2 and number of DOFs
on triangle is (p− 1)(p− 2)/2.

The edge through-thickness basis function is given by

(4) β00 = λ0λ0, φ
eq
l = β00ζ(1− ζ)Ll(2ζ − 1)

where λ0 is the barycentric coordinate for the node of the triangle to which the edge through thickness
is adjacent. If p is the order of the polynomial in the prism, then 0 ≥ l ≥ p − 2 and the number of
DOFs on edge is p− 1. The quadrilateral through thickness basis function is

(5) β0i = λ0λi, φq
l,m = β0iζ(1− ζ)Ll(λ0 − λi)Lm(2ζ − 1)

where 0 and i indicate nodes on opposite corner nodes of a quadrilateral with its own canonical
numbering. If p is the order of the polynomial in the prism, then 0 ≥ l,m, l + m ≥ p − 4 and the
number of DOFs on the quadrilateral is (p− 3)(p− 2)/2. The bubble prism basis functions are given
by

(6) β0i = λ0λiλj, φp
l,m,k = β0ijζ(1− ζ)Ll(λ0 − λi)Lm(λ0 − λj)Lk(2ζ − 1)

where 0, i, j are indices of nodes on the triangle. If p is polynomials order in prism, then 0 ≥
l,m, k, l +m+ k ≥ p− 5 and number of DOFs of the prism is (P − 5)(P − 4)(P − 3)/6.

3. Example
In the following examples we present two classical tests of a pinched cylinder. The reference

solutions provided by [4] are reproduced. However, exploring the flexibility of the method, increasing
the approximation order in the shell plane or shell thickness, we are able to find a softer, converged
solution, see Figure 1.

Figure 1. Pinched cylinder without diaphragm tension on the left and with diaphragm compression on the right.
See [4] for more information about geometry, material parameters and reference solution. Analysed meshes are
available from [1].

4. Conclusions
The solid-shell element presented here has a number of properties. First, element DOFs do not

posses rotations, such that element could be used in conjunction with classical solid elements without



the need for any additional transfer elements. Second, the approximation basis is hierarchical. Such
an approximation allows for efficient construction of iterative solvers tailored for hp-adative code.
Third, the approximation basis is heterogenous, that is an arbitrary approximation order can be set
independently for each geometrical entity, i.e. edge, triangle, quad or prism. Fourth, local approxi-
mation of membrane displacements and normal displacements through the thickness are independent
from each other. Finally, the physical equation for 3d solid can be used in the local shall coordinate
system.

5. References
[1] MoFEM finte element code. http://mofem.eng.gla.ac.uk.
[2] Mark Ainsworth and Joe Coyle. Hierarchic finite element bases on unstructured tetrahedral

meshes. International Journal for Numerical Methods in Engineering, 58(14):2103–2130, 2003.
[3] R Hauptmann and K Schweizerhof. A systematic development of solid shell element formulations

for linear and non linear analyses employing only displacement degrees of freedom. International
Journal for Numerical Methods in Engineering, 42(1):49–69, 1998.

[4] Saman Hosseini, Joris JC Remmers, Clemens V Verhoosel, and René Borst. An isogeometric
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