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1. Introduction

Shells of translation are structural elements veften encountered in the engineering
practice. Their middle surface is generated byréica curve sliding along another vertical curve.
The curves can mostly be circles, ellipses, orlpales. They occur as parts of aircraft and marine
structures in mechanical engineering, create cavMdesge span structures in civil engineering.

These shells subjected to the external distriblbed are liable to the buckling due to
dominant compression membrane forces within thé.dhes the reason, why the stability problem
has been analysed since the beginning of the twaamtiury. It was then when the first very slender
structures of barrel shells appeared.

Solving stability of the thin shell, it is oftensafficient to determine the elastic critical load
from eigenvalue buckling analysis, i.e. the loatew perfect shell starts buckling. Nonlinear
analysis is necessary, resulting in a full loagdisement response. Basis of this paper is to
highlight the difference in the results of thes® @mpproaches. It is also necessary to includealniti
imperfections of real shell into the solution aretesimine limit load level more accurately. The
geometrically nonlinear theory represents a bawmighe reliable description of the postbuckling
behaviour of the imperfect shell.

Murray and Wilson first presented idea of combiningcremental (Euler) and
iterative (Newton-Raphson) methods for solving nwdr problems. Early works involving critical
points and snap-through effect were written by Bhand Popov, and Sabir and Lock. Using
arc-length method to pass limit points on load-@dispment paths introduced Riks in [1]. Getting
through this problem using displacement controtpdure presented Batoz and Dhatt. Detection of
critical points using arc-length method was introgl by Wriggers and Simo [2]. Works of Bathe
dominate in application of FEM to geometric nonéingoroblems, Crisfield [3] incorporated
problematic into PC codes.

2. Stability analysis

lllustrative example of steel shallow shell loadgdthe external pressure (Fig. 1) is presented.
Results of eigenvalue buckling analysis are preskfitst. They offer an image about location of
critical points of nonlinear solution, help withttiegs in the management of nonlinear calculation
process. Results of fully nonlinear analysis folldideal shell and structure with initial
imperfection).

Presented results were obtained by division on 32t8ments. Boundary conditions are first
considered as simply supported on all edges (UX,dod UZ applied on all lines), in the latter
cases different types of boundary conditions aresiciered. Element type SHELL181 (4 nodes, 6
DOF at each node) was used. The arc-length metlasdchosen for analysis, the reference arc-
length radius is calculated from the load increm@nrily fundamental path of nonlinear solution
has been presented.

The difference between the critical load' @igenvalue) from eigenvalue buckling analysis
and load level in the upper limit point of the ledidplacement path of non-linear analysis is
significant. Non-conservative results offered frbrat approach are not applicable to practice.



Lx =500 mm
Ly = 400 mm
Pn= 2.0 N/mnf
E =210 GPa
v=0.3

A2 =30 mm
B2 =20 mm
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Fig. 2. Fundamental load-displacement path for ajpele

Analysis of imperfect shell follows. The shape witial displacementsvas created identical
to the shape of the'leigenmode. Multiplier of thed{mensionlessmode a, was assumed 0.5mm

and 1mm respectivelyncluding the effects of imperfections we can sderther decline of load
in the upper limit point in comparison with the fget shell.
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