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1. Introduction
Mixed/enhanced shell finite elements involve additional local parameters which must be con-

densed out to reduce the size of a tangent elemental matrix to the standard one.
The number of elemental parameters can be quite large, sometimes exceeding the number of

nodal variables associated with the element, and, typically, this condensation is performed by elimina-
tion of particular types of parameters one after the other by inversion of respective submatrices. This
approach must be adjusted to each new formulation of a finite element, which is a clear drawback.

An alternative approach is to condense out all parameters together, which involves computation
of the Schur complement. To speed up this process, a Partial Factorization (PF) technique is tested as
a replacement for the standard Schur complement computations. In this paper, we test and compare
its performance for a range of shell, solid-shell and 3D elements.

2. Finite elements with additional parameters
For the considered class of finite elements, the governing functional F depends on the nodal

displacements and rotational parameters uI and the elemental multipliers q. For kinematically
non-linear problems, the stationarity condition of F (uI ,q) yields a system of equilibrium equations
for an element, ru(uI ,q) = 0 and rq(uI ,q) = 0. The linearized (Newton) form of these equations
is as follows:
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where K .
= ∂ru/∂uI , L .

= ∂ru/∂q and Kqq
.
= ∂rq/∂q. Note that K and Kqq are symmetric

and, in general, indefinite.
To eliminate the multipliers at the element level and to reduce the size of a tangent matrix to the

standard one, defined by the number of nodes on the element and dofs/node, we calculate ∆q from
the second equation, and we use it in the first equation, which yields

(2) K∗∆uI = −r∗, where K∗ = K − LK−1
qq LT and r∗ = ru − LK−1

qq rq.

We see that the reduced (or condensed) matrix K∗ is defined as the Schur complement of K, and
typically is calculated in several steps: (1) triangularization of Kqq, (2) one back-substitution for
each column of LT to obtain K−1

qq LT , and (3) multiplication of L by K−1
qq LT and substraction of

the product from K. To speed up the above condensation, we implemented and tested an alternative
method described below.

3. Partial Factorization (PF)
To define the PF method, let us first interchange the order of uI and q so instead of the matrix

of eq. (1), we have the matrix A defined below. The LU decomposition of A is
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Noting that L21U11 = L and L11U12 = LT , we obtain L21U12 = LU−1
11 L−1

11 LT = LK−1
qq LT . Hence,

(4) K − L21U12 = K − LK−1
qq LT = K∗,

where K∗ is the reduced matrix of eq. (2). We do not compute the bottom-right block factors L22

and U22 to obtain this matrix, which explains the term ”partial” factorization.

4. Numerical results
Tests were performed using only 1 core of a multi-core machine (2 processors Xeon X5650

2.66GHz with 6 cores each, running under Linux). This is in accord with the parallelization of a loop
over elements which we implemented in [1], by which each core processes a different finite element.

The stiffness matrices used in computations were obtained for the central elements of patch
tests of [MacNeal, Harder, 1985]. The computations were repeated 1 million times for each matrix.
The speedups are presented in Table 1, where the best results for each matrix are boldfaced.

Shell elements Solid-shell elements 3D elements
Solver Method EAS10 HW35 HW43 EAS10 HW29 HW47 EADG12 EAS30 HW60
DSYTRF 1RHS 0.26 0.48 0.68 0.30 0.56 0.60 0.29 0.45 0.75
MA64 1RHS 0.57 1.02 1.36 0.72 1.37 1.51 0.84 1.23 1.74

DSYTRF mRHS 0.97 1.72 2.06 1.04 1.93 1.82 1.12 1.49 2.20
MA64 mRHS 0.62 1.04 1.37 0.77 1.39 1.82 0.90 1.26 1.75

DSYTRF ownPF 1.27 2.47 3.37 1.37 2.64 2.52 1.57 1.86 2.41
MA64 PF 0.58 1.41 1.91 0.72 1.90 2.10 0.85 1.49 2.31
Matrix density [%] 91.20 100.00 58.70 98.40 48.20 29.20 40.60 22.20 13.70
Reference time [secs] 6.77 49.96 129.08 10.46 75.19 108.19 13.34 53.88 192.54

Table 1. Speedup for particular methods and solvers related to the time for scheme of eq. (3) and solver of [3].

Solver and method. For reference, we used the scheme of eq. (2) and the LUDCMP routine of [3].
Besides, we tested two routines based on the Gauss elimination: DSYTRF of [LAPACK ver. 3.2]
and MA64 of [HSL, 2013]. To obtain K−1

qq LT , the back-substitution routine is called in two ways:
either for each column of LT separately (“1RHS”) or for all columns of LT together (“mRHS”).
Besides, “ownPF” indicates our modification of the code to perform the PF.

Finite elements. Three types of elements were tested: 4-node shells, 8-node solid-shells and 8-node
3D elements. Their formulations are designated by: HW - based on the Hu-Washizu functional
and enhanced for shell and solid-shell elements [2], EAS - based on the potential energy with the
Enhanced Assumed Strain, and EADG - based on the potential energy with Enhanced Assumed Dis-
placement Gradient. The number of additional parameters follows these letters.

Concluding, the tests show that the implementation of the Partial Factorization (PF) is benefi-
cial for almost all elements and the method using “DSYTRF” and “ownPF” provides the best speedup.
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