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1. General

The aim of present contribution is to study flow of Stokesian fluid in a linear elastic porous
medium, and to derive macroscopic equations of Brinkman’s type.

The analysis of the Stokesian flow through porous medium is commonly realized under the
assumption of the incompressibility of the fluid and the ideal rigidity of a porous structure (a skeleton).
However, in such analysis an experimental evidence is neglected that the compressibility of fluid
(water) is always smaller than that of the skeleton material. The compressibility of the water at25oC
equals4.6× 10−10Pa−1, while the compressibility of the dense sand or sandy gravel is of the order of
1 × 10−8Pa−1, while this of the hard rocks≈ 3 × 10−10Pa−1. This means that in many important for
the practice cases the elasticity of skeleton should be accounted for.

The isotropic seepage of a viscous Newtonian fluid through a porous skeleton is described at a
macroscopical scale (a scale large with respect to the pore dimensions) by Darcy’s law. The vector
field v denotes the velocity of the fluid defined as the mean rate of flow through a surface element of
unit area. This law patterned on others transport equation (Fourier’s, Ohm’s, Fick’s) does not render
aptly the specificity of the flow at peripheries of porous medium. A basic difficulty is that any viscous
shear tensor can be introduced in relation to it, as the viscous shearing in Darcy’s flow is neglected.
Related to this objection are difficulties in posing the boundary conditions, for example for problems
in which the fluid flows through porous medium and adjoining empty space, cf. [1] - [3].

2. Brinkman’s equation

For these reasons H. C. Brinkman proposed to supplement Darcy’s law in the additional term
containing the Laplacian of the fluid velocityv. He considered the incompressible fluid

∇ · v = 0(1)

and suggested the following equation

∇p = − η

K
v + η′ ∆v(2)

wherep is the pressure field in the fluid, whileK is the permeability of porous medium. The coeffi-
cientη is the fluid viscosity and the coefficientη′ is a modified fluid viscosity which may be different
from η. This equation for low values ofK is approximated by Darcy’s equation

v = − K

η
∇p(3)

while for high values ofK Stokes’ equation (it is Navier-Stokes equation with the inertial terms
neglected) is obtained.

∇p = η ∆v(4)

The boundary conditions at the interface between porous medium and free space filled by the fluid
may be derived for Brinkman’s equation (2). One easily observe that the first term (resulting from



Darcy’s law) at RHS is negligible in comparison to the normalσnn and shearingσnt stresses. There-
fore the following components of stress should be continuous

σnn = − p + 2 η′ ∂vn

∂n
and σnt = η′

(
∂vn

∂t
+

∂vt

∂n

)
(5)

wheren indicates the normal direction andt the tangential direction. Assuming (2) to be valid in
transition region the tangential velocity component is continuous at the interface.

3. Equations of micro-periodic porous medium

Let Ω be an open bounded and connected domain with the boundary∂Ω. The domainΩ has an
εY - periodic structure. For a fixedε > 0 all the relevant quantities are marked by the superscriptε.
Let uε andvε be the fields of displacement in the elastic skeleton and the velocity inΩε

F , respectively.
By pε we denote the pressure in the fluid. The interface fluid-solid is denoted byΓε. On the interface
of fluid-solid the continuity of normal stresses and of velocities is imposed.

4. Separation of scales, asymptotic expansions and homogenisation

If l andL are the characteristic lengths of the local and the macroscopic scales their ration
should obey the inequalityε = l/L � 1. This condition is required to obtain Darcy’s law, cf. [4] -
[7]. If the separation of scales is not so distinct, it is, if we have only

ε =
l

L
< 1(6)

then the modification of Darcy’s equation presented by Eq.(2) can be obtained, cf. [5].
The asymptotic expansions of mechanical fields in both, the fluid and the skeleton permits to

obtain Brinkman’s term of relative weightO(ε3), as in [5], but our equation involves the motion of
the elastic skeleton, cf. [6]. The problem discussed in [7] is solved as an example.
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