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1. Introduction

The dimensional reduction [1] remains one of most powerful methods of construction of the
hierarchy of refined shell models [2, 3, 4]. Here the further development of high-order shell theories
[5, 6] is proposed. The main improvement consists in the satisfaction of the boundary conditions
on the shell faces. The surface density of Lagrangian as well as the constraint equations defined on
the shell coordinate surface are derived from the Lagrangian volumetric density and the boundary
conditions on the faces using the biorthogonal expansion technique. The dynamic equations are
formulated as Lagrange equations of the second kind on the groundwork of the Lagrange multipliers
method. The new generalized forces accounting the effect of the constraints are introduced.

2. Generalized Lagrange’s equations of the II’nd kind for constrained continuous systems

Let us consider a continuous mechanical system on .S C R”. Let the system be defined within
the configuration space (2, with the field variables q;(M,t), I = 1...N, M € S,t € R, UO0, the
spatial Ls(qr, qr, L]qr]) and hypersurface Lr(q;) Lagrangian densities [5, 6], and the linear con-
straints f%(qr,Cplgs]) =0,Q =1... Mp,where Ly, J =1... Myand Cp, P = 1... M are linear
operators [7]. Let also the spatial (u, v)s and hypersurface (u, v)r scalar products be defined by the
appropriate integrals [S]. Thus, we can derive the Lagrange equations of the 2’nd kind [8] and the
natural boundary conditions for the considered system in the following form [7]:
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Here )\ denote the Lagrange multiplier; LY, C} are the operators being adjoined to L, Cp
with respect to the scalar products, and B%, B$ are appropriated boundary operators ([5, 6] and [7]).

3. Formulation of the shell model as a two-dimensional constrained mechanical system

Let us consider an elastic shell V' C R? with smooth faces S.. Let s be a stress tensor, u
be a displacement vector, C be an elastic constants tensor. The boundary conditions on S. can be
represented as s|, -n, = [C: (V®u)]|, - ny = q4 where q4 is the resultant force vector. The
2D shell model is defined on the two-dimensional manifold S corresponding to the base surface. We
can “’shift” the boundary conditions from S to S representing the vector u in the basis r®, n defined
on the tangent fibration 7,5 [7]. Now the dimensional reduction can be applied; let us introduce the
biorthogonal expansions [3, 6] for the displacement vector, u = (u&k)ro‘ + uék)n)p(k)(g ), o = 1,2,
k=0...N,( € [—1,1]is the normal coordinate. Therefore the Lagrangian surface density on .S can
be formulated [5, 6], and the boundary conditions on .S.. become the constraints defined on S [7, 9]:
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Here the “surface” values C:”i](&k) = Oy (£1) + hiC”5]5 p(£1); O = C |y (7]

of the generalized elastic constants C/P? [6, 7] are introduced. Thus, The Lagrange equations (4, 5)
and their natural boundary conditions (6) can be represented in the following formulation [7]:
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where H (m Bk ) and DE )) are linear operators [5]. The shell model consists in (4, 5, 6), the kinematic
equations and the initial conditions (see [5, 6]), the constraint equations (3), and the constitutive
equations represented as follows [7]:
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the new forces § ( ) account the boundary conditions on S+ by means of the Lagrange multipliers \;".

4. Conclusions

Now the 2D model allows one to obtain solutions satisfying the boundary conditions on the
faces of a shell as well as to estimate the shell stiffness properly on the basis of low-order theories.
The “elementary” shell theory of N’th order [5, 6] follows from the “extended” one [7, 9] if the
constraints (3) are neglected. The effect of the constraints is analyzed using the solutions of some test
problems of plate and shell dynamics [9]. To formulate the presented model in terms of first-order
partial differential equations of Hamilton type [8] a generalized Nambu formulation [10] is efficient.
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