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1. Phase-Field Approach and Solidification 

When modeling phase transitions within a material, it is necessary to solve a set of equations 

governing the thermodynamics of the problem at hand. The equations involved are meant to describe 

diffusion in the bulk phases and the intricate conditions at the moving phase boundary. As an example, 

when dealing with solidification in a pure material, the governing set of equations is called the "Stefan 

problem", given by  
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where Ω𝐿,𝑆 is the bulk region of the solid/liquid phase and Γ is the boundary separating. Further, 𝑇 =
𝑇(𝒙, 𝑡) is the temperature field of the system with 𝑇𝑚 its melting temperature, 𝑐 its heat capacity, 

𝐻𝑓𝑢𝑠 the latent heat of fusion, 𝛼 the thermal diffusivity, 𝑣𝑛 the normal velocity of the interface, 𝜅 the 

radius of curvature of the interface, 𝜎 the surface tension and 𝜇 the inter facial mobility. The first 

equation governs the heat transfer in the two phases, the second equation, which describes the 

condition of heat balance at the interface, states that the normal velocity of the interface is 

proportional to the discontinuity in the temperature gradient. The last equation, called the Gibbs-

Thomson relation, captures the change of melting temperature at the interface due to kinetic and 

capillary effects, i.e. interaction between solid and liquid phase boundaries. In the equations defining 

the Stefan problem, the width of the interface is treated as a mathematical surface; meaning that the 

width of the interface is non-present. This is referred to as a "sharp interface." It is generally assumed, 

when modeling solidification, that the interface between two phases is in local thermodynamically 

equilibrium. Moreover, a pure melt can exist at a temperature 𝑇 < 𝑇𝑚 but will begin to solidify if a 

disturbance to the system in the shape of a crystal seed is introduced. There are two competing driving 

forces that govern the growth of the seed; what they have in common is that they strive to reduce the 

overall free energy of the system to a minimum. The first one is the release of latent heat from the 

growing crystal where the faster the latent heat is conducted away, the faster the interface can evolve. 

It is thus desirable for the interface to evolve so as to maximize its surface area, but the interface also 

comes with a surface energy which in turn implies that the interface would evolve so as to minimize 

its surface area. The growth of the interface is thus governed by a compromise between these two 

phenomena. A different situation arises when dealing with the solidification of an alloy; here one has 

to consider another type of diffusion apart from the thermal diffusion: namely the diffusion of 

chemical species. 

However, the rate of thermal diffusion in a metal is much higher than that of the solute diffusion; 

it is thus the latter of the two effects which is dominant in governing the growth of the interface. The 

rejection of solute from the interface is analog to the release of latent heat in the thermal case. 

Additionally, the fact that the thermal diffusion operates on a timescale much smaller than the 

chemical diffusion makes the numerics involved in simulation of non-isothermal solidification 

nontrivial. 



The phase-field method, which was introduced by Cahn and Hilliard [1] to model phase 

separation in a binary mixture of fluids, introduces a parameter 𝜙(𝒙, 𝑡) defined on a continuum field; 

it does not have any discontinuities but takes on a fixed value in the bulk phases and varies 

continuously across the interface which is of finite width. The values of the parameter - are used to 

describe the order of the phases where a disordered phase, i.e. liquid would be defined by 𝜙 = 𝑎 and 

an ordered phase, i.e. solid would be defined by 𝜙 = 𝑏. The parameter 𝜙 is therefore commonly 

referred as the order parameter. The phase  field model for solidification consists of an equation for 

the evolution of the order parameter coupled with equations governing the dynamics of diffusion; in 

these equations, the thermodynamic and kinetic coefficients are tuned so that the phase-field model 

becomes equivalent to the original sharp interface model in the limit when the interface width 𝑤𝜙 →

0. The main advantage of the phase-field model is that the explicit tracking of the interface is no 

longer required. 

3. Non-isothermal solidification of a Ni-Cu alloy 

In this section, a model which includes thermal effects is used to simulate the dendrite growth 

of a crystal seed in an undercooled melt of a binary Ni-Cu alloy. Adding an equation for the heat 

transfer does not only produce a more realistic model of the solidification process but also allows one 

to study the effects of boundary heat flux, which is of great importance to, for example, metal casting 

in the industries. The model is given in [2] and not repeated here. The phase-field and diffusion 

equation were discretized using the finite volume method and an explicit Euler scheme. When it 

comes to solving the heat equation, it becomes problematic due to the vast difference in the diffusivity 

rate of the solute and temperature field. The temperature field evolves much more rapid than the 

solute field and to keep numerical stability, with explicit schemes, the time step must be chosen 

several orders of magnitude smaller compared to when solving the isothermal model which, in turn, 

leads to a dramatic increase in simulation time. We overcome this problem by the semi-implicit ADI 

method which, in the two-dimensional case, alternates between treating grid point values implicit in 

the x-direction and explicit in the y-direction and vice versa, hence the name alternating direction 

implicit. A typical simulation starts from a undercooled, supersaturated melt with an initial fraction 

of 𝑐 = 0.4083 Ni and an initial temperature 𝑇 = 1574 𝐾. A small crystal seed was placed in the 

center of the simulation grid. The growth of the dentrite for two different thermal boundary conditions 

at 𝑡 = 2.6 𝑚𝑠 are depicted in Fig. 1. 

 
Figure 1. Growth of a dentrite in a Ni-Cu alloy. Left: adiabatic boundary conditions. Right: a 

negative heat flux at left boundary is applied, thus the dentrite growth faster on the left hand side. 
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