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Dynamics analysis of a truck-mounted crane is presented in the paper. A mathematical model
of a crane allows to take into account the crane’s flexible connection with the ground, the flexibility

of a selected link, drives and rope. A crane is built of three links (n,) — Fig. 1. The first of them is
the truck chassis which is fixed to the ground by means of four supports (n,), modeled as spring-

damping elements. In order to
consider flexibility of the third
link, the rigid finite elements
method is used [1]. In this
method, flexible link p of the
crane is replaced by means of the

system of n‘® rigid elements
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interconnected by n!? spring-

sde
damping elements, which describe
the bending and torsional
flexibility of the link. It is
assumed that both of the links gl
were driven directly by the driving P

.. R = supl flexible supported chassis
torques t'”| . The friction in
dr p=2,3

the joints of the crane is taken into F\\\\\\“‘—" »
account by using LuGre model
[2]. The load was modeled in a
form of a material point
suspended on a flexible rope.

The formalism of joint coordinates and homogeneous transformation matrices [3] are used to
describe the crane’s geometry. The vector of generalized (joint) coordinates is defined in the
following form:
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Fig. 1. Truck-crane model
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The equations of the truck-mounted crane model motion were derived by using the Lagrange
equations, based on the algorithms presented in [1,4]:
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where: E, = > E{” —kinetic energy of the system,
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R=R"™P+> RP+> RY+R - function of energy dissipation of the system,
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EP = %tr {T(p)H‘p)T(p)T } , B =m®gj, T™EP) — kinetic and potential energy of gravity forces of

link p, T® — link transformation matrix, H® — link inertia matrix, m®® — link mass, g —

acceleration of gravity, fc(ﬁ}, — position vector of link mass center defined in the local coordinate

system, j;=[0 0 1 0],

EP) = %séf) (af —qi” )2 , R{P = %déf’ (g5 —g )2 — potential energy of spring deformation and

function of energy dissipation of drive p, s{”,d{” — drive stiffness and damping coefficients,
EY, 1 > ss(';(es('zl)2 RY 1 > ds(';(eg';)z — potential energy of spring deformation and

2 ae{x,y,x} 2 ae{x,y,x}

function of energy dissipation of support i, s,d — support stiffness and damping
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and function of energy dissipation of link p, S =diag{s", 55", 5"},
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E,, ==6s¢€, R =§5rdre'r2 — potential energy of spring deformation and function of energy

— link stiffness and damping coefficients,
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dissipation of rope, s,,d, — rope stiffness and damping coefficients, e, — rope elongation,
Q, =-t{P —friction torque in joint p .

The equations of motion of the system are integrated by using the Runge-Kutta method of the
fourth order with a fixed step equal to 10™*s. The results of numerical calculations show
a significant influence of the flexibility link and friction on the behavior of the crane and they can

be useful for a design engineer in strength analysis of its components, including load bearings, and
in the selection of the drive systems.
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