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Dynamics analysis of a truck-mounted crane is presented in the paper. A mathematical model 

of a crane allows to take into account the crane’s flexible connection with the ground, the flexibility 

of a selected link, drives and rope. A crane is built of three links ( ln ) – Fig. 1. The first of them is 

the truck chassis which is fixed to the ground by means of four supports ( sn ), modeled as spring-

damping elements. In order to 

consider flexibility of the third 

link, the rigid finite elements 

method is used [1]. In this 

method, flexible link p of the 

crane is replaced by means of the 

system of ( )p

rfen  rigid elements 

interconnected by 
( )p

sden  spring-

damping elements, which describe 

the bending and torsional 

flexibility of the link. It is 

assumed that both of the links 

were driven directly by the driving 

torques 
( )

2,3

p

dr p
t . The friction in 

the joints of the crane is taken into 

account by using LuGre model 

[2]. The load was modeled in a 

form of a material point 

suspended on a flexible rope.  

The formalism of joint coordinates and homogeneous transformation matrices [3] are used to 

describe the crane’s geometry. The vector of generalized (joint) coordinates is defined in the 

following form: 
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The equations of the truck-mounted crane model motion were derived by using the Lagrange 

equations, based on the algorithms presented in [1,4]:  
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Fig. 1. Truck-crane model 
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, 3 p

p p p p

p g C
E m g j T r  – kinetic and potential energy of gravity forces of 

link p , 
( )p

T  – link transformation matrix, 
( )p

H  – link inertia matrix, 
( )pm  – link mass, g  – 

acceleration of gravity, ( )

( )
p

p

C
r  – position vector of link mass center defined in the local coordinate 

system,  3 0 0 1 0 ,j  
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dr dr dr jR d q q   – potential energy of spring deformation and 

function of energy dissipation of drive p , ( ) ( ),p p

dr drs d  – drive stiffness and damping coefficients, 
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   – potential energy of spring deformation and 

function of energy dissipation of support i , 
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, , , ,
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 – support stiffness and damping 

coefficients, 
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 – support elongation, 
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 q D q  – potential energy of spring deformation 

and function of energy dissipation of link p ,  ( , ) ( , ) ( , ) ( , )
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 – link stiffness and damping coefficients, 
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2
p r r r rE s e , 21

2
r r r rR d e  – potential energy of spring deformation and function of energy 

dissipation of rope, ,r rs d  – rope stiffness and damping coefficients, re  – rope elongation, 
( )p

j fQ t   – friction torque in joint p . 

The equations of motion of the system are integrated by using the Runge-Kutta method of the 

fourth order with a fixed step equal to 410 s . The results of numerical calculations show 

a significant influence of the flexibility link and friction on the behavior of the crane and they can 

be useful for a design engineer  in strength analysis of its components, including load bearings, and 

in the selection of the drive systems. 
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