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1. Introduction 

Shape memory alloys (SMAs) have unique properties of pseudoelasticity and shape memory 

effect. Hence they have been applied to commercial products and studied for other new applications 

[e.g. 1]. However, their mechanical properties are nonlinear including hysteresis and vary depending 

on temperature, loading frequency, number of cycles and so on. To understand such complicated 

thermo-mechanical behaviours and to design structural systems including SMA elements optimally, a 

simple yet reasonably accurate constitutive model is necessary. Although a three-dimensional finite 

element analysis can be made, its calculation is time-consuming. Moreover, in most of applications 

an SMA element is in wire, coil or tube and only its one-directional movement is considered. 

Therefore, lumped parameter models are still useful, especially when calculations must be done for 

many combinations of parameter values at an early stage of product design. 

In our laboratory, several types of constitutive models with an energy-based transformation 

criterion have been proposed [2-5]. The features of this model are that (1) more than three 

phases/variants can be considered, (2) rate-dependent effect can be expressed and (3) quantitative 

analysis can be made. 

In this paper this constitutive model is extended to be able to express the cyclic deformation 

behaviour and the validity of the model is shown by comparing the calculated results with the 

measured results. 

2. Constitutive equations 

The constitutive equations, which duplicate the thermodynamic behaviour of shape memory 

alloys, are comprised of the following three equations [2-5]: the phase transformation criterion, 
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the constitutive equation, 
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and the energy flow balance equation, 
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In the equations σ is the stress, Eα is the Young’s modulus of phase α, εα is the intrinsic strain, sα is the 

entropy, T is the temperature of the material, Tα↔β is the ideal reversible transformation temperature 

between phase α and phase β, Ψα→β is the energy required when phase α transforms into phase β due 

to the dissipation such as internal friction and zα1 is the variable related to the volume fraction of 

phase α. In the constitutive equation ε is the strain, zα is the volume fraction of phase α, αT is the linear 

coefficient of expansion and TS is the surrounding temperature. In the energy flow balance equation C 

is the specific heat capacity, t is the time, zα→β is the volume fraction transforming from phase α to 

phase β, h is the coefficient of conduction and A/V is the area/volume. In this study we consider not 



only austenite phase (A) and martensite phase (M) but also austenite phase with residual martensite 

phase (ARi), which is often observed during the first several reverse transformations. Accordingly, 

phase transformation proceeds as A→M→ AR1→M→AR2→M, where AR1 and AR2 are assumed to 

have different amount of residual martensite phase. 

3. Result 

Figure 1 shows a stress-strain curve for the first two and a half of full cycle. Symbols represent 

measured data and lines are prediction. It is seen that the prediction can capture the residual strain and 

the reduction of transformation stress well. Figure 2 shows a stress-strain curve for cyclic 

deformation with increasing strain amplitude. The prediction can capture staircase-like increase of 

the transformation stress during the second and the third loading phases. 

4. Conclusion 

One-dimensional phase transformation model was extended so as to express the cyclic 

deformation behaviour.  Comparison in stress-strain curve of the prediction with the measured data 

showed the validity of the model. 
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Figure 1. Stress-strain curve for full strain 

cycles. 

 
Figure 2. Stress-strain curve for cyclic deformation 

with increasing strain amplitude. 
 


